shr_spfn_mod.F90 Source File


Source Code

! Define flags for compilers supporting Fortran 2008 intrinsics
! HAVE_GAMMA_INTRINSICS: gamma and log_gamma
! HAVE_ERF_INTRINSICS: erf, erfc, and erfc_scaled
! erfc_scaled(x) = (exp(x**2)*erfc(x))

! Use this flag for compilers that don't have real intrinsics, but link in
! a library for you.
! HAVE_ERF_EXTERNALS: erf and erfc

! These compilers have the intrinsics.
! Intel also has them (and Cray), but as of mid-2015, our implementation is
! actually faster, in part because they do not properly vectorize, so we
! pretend that the compiler version doesn't exist.
#if defined CPRIBM || defined __GFORTRAN__
#define HAVE_GAMMA_INTRINSICS
#define HAVE_ERF_INTRINSICS
#endif

! PGI has external erf/derf and erfc/derfc, and will link them for you, but
! it does not consider them "intrinsics" right now.
#if defined CPRPGI
#define HAVE_ERF_EXTERNALS
#endif

! As of 5.3.1, NAG does not have any of these.

module shr_spfn_mod
  ! Module for common mathematical functions

  ! This #ifdef is to allow the module to be compiled with no dependencies,
  ! even on shr_kind_mod.
#ifndef NO_CSM_SHARE
  use shr_kind_mod, only: &
       r4 => shr_kind_r4, &
       r8 => shr_kind_r8
  use shr_const_mod, only: &
       pi => shr_const_pi
#endif

  implicit none
  private
  save

#ifdef NO_CSM_SHARE
  integer, parameter :: r4 = selected_real_kind(6)  ! 4 byte real
  integer, parameter :: r8 = selected_real_kind(12) ! 8 byte real
  real(r8), parameter :: pi = 3.1415926535897932384626434E0_r8
#endif

  ! Error functions
  public :: shr_spfn_erf
  public :: shr_spfn_erfc
  public :: shr_spfn_erfc_scaled

  interface shr_spfn_erf
     module procedure shr_spfn_erf_r4
     module procedure shr_spfn_erf_r8
  end interface shr_spfn_erf

  interface shr_spfn_erfc
     module procedure shr_spfn_erfc_r4
     module procedure shr_spfn_erfc_r8
  end interface shr_spfn_erfc

  interface shr_spfn_erfc_scaled
     module procedure shr_spfn_erfc_scaled_r4
     module procedure shr_spfn_erfc_scaled_r8
  end interface shr_spfn_erfc_scaled

  ! Gamma functions
  ! Note that we lack an implementation of log_gamma, but we do have an
  ! implementation of the upper incomplete gamma function, which is not in
  ! Fortran 2008.

  ! Note also that this gamma function is only for double precision. We
  ! haven't needed an r4 version yet.

  public :: shr_spfn_gamma
  public :: shr_spfn_igamma

  interface shr_spfn_gamma
     module procedure shr_spfn_gamma_r8
  end interface shr_spfn_gamma

  ! Mathematical constants
  ! sqrt(pi)
  real(r8), parameter :: sqrtpi = 1.77245385090551602729_r8

  ! Define machine-specific constants needed in this module.
  ! These were used by the original gamma and calerf functions to guarantee
  ! safety against overflow, and precision, on many different machines.

  ! By defining the constants in this way, we assume that 1/xmin is
  ! representable (i.e. does not overflow the real type). This assumption was
  ! not in the original code, but is valid for IEEE single and double
  ! precision.

  ! Double precision
  !---------------------------------------------------------------------
  ! Machine epsilon
  real(r8), parameter :: epsr8 = epsilon(1._r8)
  ! "Huge" value is returned when actual value would be infinite.
  real(r8), parameter :: xinfr8 = huge(1._r8)
  ! Smallest normal value.
  real(r8), parameter :: xminr8 = tiny(1._r8)
  ! Largest number that, when added to 1., yields 1.
  real(r8), parameter :: xsmallr8 = epsr8/2._r8
  ! Largest argument for which erfcx > 0.
  real(r8), parameter :: xmaxr8 = 1._r8/(sqrtpi*xminr8)

  ! Single precision
  !---------------------------------------------------------------------
  ! Machine epsilon
  real(r4), parameter :: epsr4 = epsilon(1._r4)
  ! "Huge" value is returned when actual value would be infinite.
  real(r4), parameter :: xinfr4 = huge(1._r4)
  ! Smallest normal value.
  real(r4), parameter :: xminr4 = tiny(1._r4)
  ! Largest number that, when added to 1., yields 1.
  real(r4), parameter :: xsmallr4 = epsr4/2._r4
  ! Largest argument for which erfcx > 0.
  real(r4), parameter :: xmaxr4 = 1._r4/(real(sqrtpi,r4)*xminr4)


  ! For gamma/igamma
  ! Approximate value of largest acceptable argument to gamma,
  ! for IEEE double-precision.
  real(r8), parameter :: xbig_gamma = 171.624_r8

contains

  ! Wrapper functions for erf
  function shr_spfn_erf_r4(x) result(res)
    real(r4), intent(in) :: x
    real(r4) :: res

#ifdef HAVE_ERF_EXTERNALS
    ! If erf is provided as an external, provide
    ! explicit interface here.
    interface
       function erf(x)
         import :: r4
         real(r4) :: x, erf
       end function erf
    end interface
#endif

#ifdef HAVE_ERF_INTRINSICS

    ! Call intrinsic erf.
    intrinsic erf
    res = erf(x)
#else

#ifdef HAVE_ERF_EXTERNALS
    ! Call compiler-provided external erf.
    res = erf(x)
#else
    ! No compiler-provided erf, so call local version.
    call calerf_r4(x, res, 0)
#endif

#endif

  end function shr_spfn_erf_r4

  function shr_spfn_erf_r8(x) result(res)
    real(r8), intent(in) :: x
    real(r8) :: res

#ifdef HAVE_ERF_EXTERNALS
    ! If erf is provided as an external, provide
    ! explicit interface here.
    interface
       function derf(x)
         import :: r8
         real(r8) :: x, derf
       end function derf
    end interface
#endif

#ifdef HAVE_ERF_INTRINSICS
    ! Call intrinsic erf.
    intrinsic erf
    res = erf(x)
#else

#ifdef HAVE_ERF_EXTERNALS
    ! Call compiler-provided external erf.
    res = derf(x)
#else
    ! No compiler-provided erf, so call local version.
    call calerf_r8(x, res, 0)
#endif

#endif

  end function shr_spfn_erf_r8

  ! Wrapper functions for erfc
  function shr_spfn_erfc_r4(x) result(res)
    real(r4), intent(in) :: x
    real(r4) :: res

#ifdef HAVE_ERF_EXTERNALS
    ! If erfc is provided as an external, provide
    ! explicit interface here.
    interface
       function erfc(x)
         import :: r4
         real(r4) :: x, erfc
       end function erfc
    end interface
#endif

#ifdef HAVE_ERF_INTRINSICS
    ! Call intrinsic erfc.
    intrinsic erfc
    res = erfc(x)
#else

#ifdef HAVE_ERF_EXTERNALS
    ! Call compiler-provided external erfc.
    res = erfc(x)
#else
    ! No compiler-provided erfc, so call local version.
    call calerf_r4(x, res, 1)
#endif

#endif

  end function shr_spfn_erfc_r4

  function shr_spfn_erfc_r8(x) result(res)
    real(r8), intent(in) :: x
    real(r8) :: res

#ifdef HAVE_ERF_EXTERNALS
    ! If erfc is provided as an external, provide
    ! explicit interface here.
    interface
       function derfc(x)
         import :: r8
         real(r8) :: x, derfc
       end function derfc
    end interface
#endif

#ifdef HAVE_ERF_INTRINSICS
    ! Call intrinsic erfc.
    intrinsic erfc
    res = erfc(x)
#else

#ifdef HAVE_ERF_EXTERNALS
    ! Call compiler-provided external erfc.
    res = derfc(x)
#else
    ! No compiler-provided erfc, so call local version.
    call calerf_r8(x, res, 1)
#endif

#endif

  end function shr_spfn_erfc_r8

  ! Wrapper functions for erfc_scaled
  function shr_spfn_erfc_scaled_r4(x) result(res)
    real(r4), intent(in) :: x
    real(r4) :: res

#if defined HAVE_ERF_INTRINSICS
    ! Call intrinsic erfc_scaled.
    intrinsic erfc_scaled
    res = erfc_scaled(x)
#else
    ! No intrinsic.
    call calerf_r4(x, res, 2)
#endif

  end function shr_spfn_erfc_scaled_r4

  function shr_spfn_erfc_scaled_r8(x) result(res)
    real(r8), intent(in) :: x
    real(r8) :: res

#if defined HAVE_ERF_INTRINSICS
    ! Call intrinsic erfc_scaled.
    intrinsic erfc_scaled
    res = erfc_scaled(x)
#else
    ! No intrinsic.
    call calerf_r8(x, res, 2)
#endif

  end function shr_spfn_erfc_scaled_r8

  elemental function shr_spfn_gamma_r8(x) result(res)
    real(r8), intent(in) :: x
    real(r8) :: res

#if defined HAVE_GAMMA_INTRINSICS
    ! Call intrinsic gamma.
    intrinsic gamma
    res = gamma(x)
#else
    ! No intrinsic
    res = shr_spfn_gamma_nonintrinsic_r8(x)
#endif

  end function shr_spfn_gamma_r8

  !------------------------------------------------------------------
  !
  ! 6 December 2006 -- B. Eaton
  ! The following comments are from the original version of CALERF.
  ! The only changes in implementing this module are that the function
  ! names previously used for the single precision versions have been
  ! adopted for the new generic interfaces.  To support these interfaces
  ! there is now both a single precision version (calerf_r4) and a
  ! double precision version (calerf_r8) of CALERF below.  These versions
  ! are hardcoded to use IEEE arithmetic.
  !
  !------------------------------------------------------------------
  !
  ! This packet evaluates  erf(x),  erfc(x),  and  exp(x*x)*erfc(x)
  !   for a real argument  x.  It contains three FUNCTION type
  !   subprograms: ERF, ERFC, and ERFCX (or ERF_R8, ERFC_R8, and ERFCX_R8),
  !   and one SUBROUTINE type subprogram, CALERF.  The calling
  !   statements for the primary entries are:
  !
  !                   Y=ERF(X)     (or   Y=ERF_R8(X)),
  !
  !                   Y=ERFC(X)    (or   Y=ERFC_R8(X)),
  !   and
  !                   Y=ERFCX(X)   (or   Y=ERFCX_R8(X)).
  !
  !   The routine  CALERF  is intended for internal packet use only,
  !   all computations within the packet being concentrated in this
  !   routine.  The function subprograms invoke  CALERF  with the
  !   statement
  !
  !          CALL CALERF(ARG,RESULT,JINT)
  !
  !   where the parameter usage is as follows
  !
  !      Function                     Parameters for CALERF
  !       call              ARG                  Result          JINT
  !
  !     ERF(ARG)      ANY REAL ARGUMENT         ERF(ARG)          0
  !     ERFC(ARG)     ABS(ARG) .LT. XBIG        ERFC(ARG)         1
  !     ERFCX(ARG)    XNEG .LT. ARG .LT. XMAX   ERFCX(ARG)        2
  !
  !   The main computation evaluates near-minimax approximations
  !   from "Rational Chebyshev approximations for the error function"
  !   by W. J. Cody, Math. Comp., 1969, PP. 631-638.  This
  !   transportable program uses rational functions that theoretically
  !   approximate  erf(x)  and  erfc(x)  to at least 18 significant
  !   decimal digits.  The accuracy achieved depends on the arithmetic
  !   system, the compiler, the intrinsic functions, and proper
  !   selection of the machine-dependent constants.
  !
  !*******************************************************************
  !*******************************************************************
  !
  ! Explanation of machine-dependent constants
  !
  !   XMIN   = the smallest positive floating-point number.
  !   XINF   = the largest positive finite floating-point number.
  !   XNEG   = the largest negative argument acceptable to ERFCX;
  !            the negative of the solution to the equation
  !            2*exp(x*x) = XINF.
  !   XSMALL = argument below which erf(x) may be represented by
  !            2*x/sqrt(pi)  and above which  x*x  will not underflow.
  !            A conservative value is the largest machine number X
  !            such that   1.0 + X = 1.0   to machine precision.
  !   XBIG   = largest argument acceptable to ERFC;  solution to
  !            the equation:  W(x) * (1-0.5/x**2) = XMIN,  where
  !            W(x) = exp(-x*x)/[x*sqrt(pi)].
  !   XHUGE  = argument above which  1.0 - 1/(2*x*x) = 1.0  to
  !            machine precision.  A conservative value is
  !            1/[2*sqrt(XSMALL)]
  !   XMAX   = largest acceptable argument to ERFCX; the minimum
  !            of XINF and 1/[sqrt(pi)*XMIN].
  !
  !   Approximate values for some important machines are:
  !
  !                          XMIN       XINF        XNEG     XSMALL
  !
  !  CDC 7600      (S.P.)  3.13E-294   1.26E+322   -27.220  7.11E-15
  !  CRAY-1        (S.P.)  4.58E-2467  5.45E+2465  -75.345  7.11E-15
  !  IEEE (IBM/XT,
  !    SUN, etc.)  (S.P.)  1.18E-38    3.40E+38     -9.382  5.96E-8
  !  IEEE (IBM/XT,
  !    SUN, etc.)  (D.P.)  2.23D-308   1.79D+308   -26.628  1.11D-16
  !  IBM 195       (D.P.)  5.40D-79    7.23E+75    -13.190  1.39D-17
  !  UNIVAC 1108   (D.P.)  2.78D-309   8.98D+307   -26.615  1.73D-18
  !  VAX D-Format  (D.P.)  2.94D-39    1.70D+38     -9.345  1.39D-17
  !  VAX G-Format  (D.P.)  5.56D-309   8.98D+307   -26.615  1.11D-16
  !
  !
  !                          XBIG       XHUGE       XMAX
  !
  !  CDC 7600      (S.P.)  25.922      8.39E+6     1.80X+293
  !  CRAY-1        (S.P.)  75.326      8.39E+6     5.45E+2465
  !  IEEE (IBM/XT,
  !    SUN, etc.)  (S.P.)   9.194      2.90E+3     4.79E+37
  !  IEEE (IBM/XT,
  !    SUN, etc.)  (D.P.)  26.543      6.71D+7     2.53D+307
  !  IBM 195       (D.P.)  13.306      1.90D+8     7.23E+75
  !  UNIVAC 1108   (D.P.)  26.582      5.37D+8     8.98D+307
  !  VAX D-Format  (D.P.)   9.269      1.90D+8     1.70D+38
  !  VAX G-Format  (D.P.)  26.569      6.71D+7     8.98D+307
  !
  !*******************************************************************
  !*******************************************************************
  !
  ! Error returns
  !
  !  The program returns  ERFC = 0      for  ARG .GE. XBIG;
  !
  !                       ERFCX = XINF  for  ARG .LT. XNEG;
  !      and
  !                       ERFCX = 0     for  ARG .GE. XMAX.
  !
  !
  ! Intrinsic functions required are:
  !
  !     ABS, AINT, EXP
  !
  !
  !  Author: W. J. Cody
  !          Mathematics and Computer Science Division
  !          Argonne National Laboratory
  !          Argonne, IL 60439
  !
  !  Latest modification: March 19, 1990
  !
  !------------------------------------------------------------------

  SUBROUTINE CALERF_r8(ARG, RESULT, JINT)

    !------------------------------------------------------------------
    !  This version uses 8-byte reals
    !------------------------------------------------------------------
    integer, parameter :: rk = r8

    ! arguments
    real(rk), intent(in)  :: arg
    integer,  intent(in)  :: jint
    real(rk), intent(out) :: result

    ! local variables
    INTEGER :: I

    real(rk) :: X, Y, YSQ, XNUM, XDEN, DEL

    !------------------------------------------------------------------
    !  Mathematical constants
    !------------------------------------------------------------------
    real(rk), parameter :: ZERO   = 0.0E0_rk
    real(rk), parameter :: FOUR   = 4.0E0_rk
    real(rk), parameter :: ONE    = 1.0E0_rk
    real(rk), parameter :: HALF   = 0.5E0_rk
    real(rk), parameter :: TWO    = 2.0E0_rk
    ! 1/sqrt(pi)
    real(rk), parameter :: SQRPI  = 5.6418958354775628695E-1_rk
    real(rk), parameter :: THRESH = 0.46875E0_rk
    real(rk), parameter :: SIXTEN = 16.0E0_rk

    !------------------------------------------------------------------
    !  Machine-dependent constants: IEEE double precision values
    !------------------------------------------------------------------
    real(rk), parameter :: XNEG   = -26.628E0_r8
    real(rk), parameter :: XBIG   =  26.543E0_r8
    real(rk), parameter :: XHUGE  =   6.71E7_r8

    !------------------------------------------------------------------
    !  Coefficients for approximation to  erf  in first interval
    !------------------------------------------------------------------
    real(rk), parameter :: A(5) = (/ 3.16112374387056560E00_rk, 1.13864154151050156E02_rk, &
         3.77485237685302021E02_rk, 3.20937758913846947E03_rk, &
         1.85777706184603153E-1_rk /)
    real(rk), parameter :: B(4) = (/ 2.36012909523441209E01_rk, 2.44024637934444173E02_rk, &
         1.28261652607737228E03_rk, 2.84423683343917062E03_rk /)

    !------------------------------------------------------------------
    !  Coefficients for approximation to  erfc  in second interval
    !------------------------------------------------------------------
    real(rk), parameter :: C(9) = (/ 5.64188496988670089E-1_rk, 8.88314979438837594E00_rk, &
         6.61191906371416295E01_rk, 2.98635138197400131E02_rk, &
         8.81952221241769090E02_rk, 1.71204761263407058E03_rk, &
         2.05107837782607147E03_rk, 1.23033935479799725E03_rk, &
         2.15311535474403846E-8_rk /)
    real(rk), parameter :: D(8) = (/ 1.57449261107098347E01_rk, 1.17693950891312499E02_rk, &
         5.37181101862009858E02_rk, 1.62138957456669019E03_rk, &
         3.29079923573345963E03_rk, 4.36261909014324716E03_rk, &
         3.43936767414372164E03_rk, 1.23033935480374942E03_rk /)

    !------------------------------------------------------------------
    !  Coefficients for approximation to  erfc  in third interval
    !------------------------------------------------------------------
    real(rk), parameter :: P(6) = (/ 3.05326634961232344E-1_rk, 3.60344899949804439E-1_rk, &
         1.25781726111229246E-1_rk, 1.60837851487422766E-2_rk, &
         6.58749161529837803E-4_rk, 1.63153871373020978E-2_rk /)
    real(rk), parameter :: Q(5) = (/ 2.56852019228982242E00_rk, 1.87295284992346047E00_rk, &
         5.27905102951428412E-1_rk, 6.05183413124413191E-2_rk, &
         2.33520497626869185E-3_rk /)

    !------------------------------------------------------------------
    X = ARG
    Y = ABS(X)
    IF (Y .LE. THRESH) THEN
       !------------------------------------------------------------------
       !  Evaluate  erf  for  |X| <= 0.46875
       !------------------------------------------------------------------
       YSQ = ZERO
       IF (Y .GT. XSMALLR8) YSQ = Y * Y
       XNUM = A(5)*YSQ
       XDEN = YSQ
       DO I = 1, 3
          XNUM = (XNUM + A(I)) * YSQ
          XDEN = (XDEN + B(I)) * YSQ
       end do
       RESULT = X * (XNUM + A(4)) / (XDEN + B(4))
       IF (JINT .NE. 0) RESULT = ONE - RESULT
       IF (JINT .EQ. 2) RESULT = EXP(YSQ) * RESULT
       GO TO 80
    ELSE IF (Y .LE. FOUR) THEN
       !------------------------------------------------------------------
       !  Evaluate  erfc  for 0.46875 <= |X| <= 4.0
       !------------------------------------------------------------------
       XNUM = C(9)*Y
       XDEN = Y
       DO I = 1, 7
          XNUM = (XNUM + C(I)) * Y
          XDEN = (XDEN + D(I)) * Y
       end do
       RESULT = (XNUM + C(8)) / (XDEN + D(8))
       IF (JINT .NE. 2) THEN
          YSQ = AINT(Y*SIXTEN)/SIXTEN
          DEL = (Y-YSQ)*(Y+YSQ)
          RESULT = EXP(-YSQ*YSQ) * EXP(-DEL) * RESULT
       END IF
    ELSE
       !------------------------------------------------------------------
       !  Evaluate  erfc  for |X| > 4.0
       !------------------------------------------------------------------
       RESULT = ZERO
       IF (Y .GE. XBIG) THEN
          IF ((JINT .NE. 2) .OR. (Y .GE. XMAXR8)) GO TO 30
          IF (Y .GE. XHUGE) THEN
             RESULT = SQRPI / Y
             GO TO 30
          END IF
       END IF
       YSQ = ONE / (Y * Y)
       XNUM = P(6)*YSQ
       XDEN = YSQ
       DO I = 1, 4
          XNUM = (XNUM + P(I)) * YSQ
          XDEN = (XDEN + Q(I)) * YSQ
       end do
       RESULT = YSQ *(XNUM + P(5)) / (XDEN + Q(5))
       RESULT = (SQRPI -  RESULT) / Y
       IF (JINT .NE. 2) THEN
          YSQ = AINT(Y*SIXTEN)/SIXTEN
          DEL = (Y-YSQ)*(Y+YSQ)
          RESULT = EXP(-YSQ*YSQ) * EXP(-DEL) * RESULT
       END IF
    END IF
30  continue
    !------------------------------------------------------------------
    !  Fix up for negative argument, erf, etc.
    !------------------------------------------------------------------
    IF (JINT .EQ. 0) THEN
       RESULT = (HALF - RESULT) + HALF
       IF (X .LT. ZERO) RESULT = -RESULT
    ELSE IF (JINT .EQ. 1) THEN
       IF (X .LT. ZERO) RESULT = TWO - RESULT
    ELSE
       IF (X .LT. ZERO) THEN
          IF (X .LT. XNEG) THEN
             RESULT = XINFR8
          ELSE
             YSQ = AINT(X*SIXTEN)/SIXTEN
             DEL = (X-YSQ)*(X+YSQ)
             Y = EXP(YSQ*YSQ) * EXP(DEL)
             RESULT = (Y+Y) - RESULT
          END IF
       END IF
    END IF
80  continue
  end SUBROUTINE CALERF_r8

  !------------------------------------------------------------------------------------------

  SUBROUTINE CALERF_r4(ARG, RESULT, JINT)

    !------------------------------------------------------------------
    !  This version uses 4-byte reals
    !------------------------------------------------------------------
    integer, parameter :: rk = r4

    ! arguments
    real(rk), intent(in)  :: arg
    integer,  intent(in)  :: jint
    real(rk), intent(out) :: result

    ! local variables
    INTEGER :: I

    real(rk) :: X, Y, YSQ, XNUM, XDEN, DEL

    !------------------------------------------------------------------
    !  Mathematical constants
    !------------------------------------------------------------------
    real(rk), parameter :: ZERO   = 0.0E0_rk
    real(rk), parameter :: FOUR   = 4.0E0_rk
    real(rk), parameter :: ONE    = 1.0E0_rk
    real(rk), parameter :: HALF   = 0.5E0_rk
    real(rk), parameter :: TWO    = 2.0E0_rk
    ! 1/sqrt(pi)
    real(rk), parameter :: SQRPI  = 5.6418958354775628695E-1_rk
    real(rk), parameter :: THRESH = 0.46875E0_rk
    real(rk), parameter :: SIXTEN = 16.0E0_rk

    !------------------------------------------------------------------
    !  Machine-dependent constants: IEEE single precision values
    !------------------------------------------------------------------
    real(rk), parameter :: XNEG   = -9.382E0_r4
    real(rk), parameter :: XBIG   =  9.194E0_r4
    real(rk), parameter :: XHUGE  =  2.90E3_r4

    !------------------------------------------------------------------
    !  Coefficients for approximation to  erf  in first interval
    !------------------------------------------------------------------
    real(rk), parameter :: A(5) = (/ 3.16112374387056560E00_rk, 1.13864154151050156E02_rk, &
         3.77485237685302021E02_rk, 3.20937758913846947E03_rk, &
         1.85777706184603153E-1_rk /)
    real(rk), parameter :: B(4) = (/ 2.36012909523441209E01_rk, 2.44024637934444173E02_rk, &
         1.28261652607737228E03_rk, 2.84423683343917062E03_rk /)

    !------------------------------------------------------------------
    !  Coefficients for approximation to  erfc  in second interval
    !------------------------------------------------------------------
    real(rk), parameter :: C(9) = (/ 5.64188496988670089E-1_rk, 8.88314979438837594E00_rk, &
         6.61191906371416295E01_rk, 2.98635138197400131E02_rk, &
         8.81952221241769090E02_rk, 1.71204761263407058E03_rk, &
         2.05107837782607147E03_rk, 1.23033935479799725E03_rk, &
         2.15311535474403846E-8_rk /)
    real(rk), parameter :: D(8) = (/ 1.57449261107098347E01_rk, 1.17693950891312499E02_rk, &
         5.37181101862009858E02_rk, 1.62138957456669019E03_rk, &
         3.29079923573345963E03_rk, 4.36261909014324716E03_rk, &
         3.43936767414372164E03_rk, 1.23033935480374942E03_rk /)

    !------------------------------------------------------------------
    !  Coefficients for approximation to  erfc  in third interval
    !------------------------------------------------------------------
    real(rk), parameter :: P(6) = (/ 3.05326634961232344E-1_rk, 3.60344899949804439E-1_rk, &
         1.25781726111229246E-1_rk, 1.60837851487422766E-2_rk, &
         6.58749161529837803E-4_rk, 1.63153871373020978E-2_rk /)
    real(rk), parameter :: Q(5) = (/ 2.56852019228982242E00_rk, 1.87295284992346047E00_rk, &
         5.27905102951428412E-1_rk, 6.05183413124413191E-2_rk, &
         2.33520497626869185E-3_rk /)

    !------------------------------------------------------------------
    X = ARG
    Y = ABS(X)
    IF (Y .LE. THRESH) THEN
       !------------------------------------------------------------------
       !  Evaluate  erf  for  |X| <= 0.46875
       !------------------------------------------------------------------
       YSQ = ZERO
       IF (Y .GT. XSMALLR4) YSQ = Y * Y
       XNUM = A(5)*YSQ
       XDEN = YSQ
       DO I = 1, 3
          XNUM = (XNUM + A(I)) * YSQ
          XDEN = (XDEN + B(I)) * YSQ
       end do
       RESULT = X * (XNUM + A(4)) / (XDEN + B(4))
       IF (JINT .NE. 0) RESULT = ONE - RESULT
       IF (JINT .EQ. 2) RESULT = EXP(YSQ) * RESULT
       GO TO 80
    ELSE IF (Y .LE. FOUR) THEN
       !------------------------------------------------------------------
       !  Evaluate  erfc  for 0.46875 <= |X| <= 4.0
       !------------------------------------------------------------------
       XNUM = C(9)*Y
       XDEN = Y
       DO I = 1, 7
          XNUM = (XNUM + C(I)) * Y
          XDEN = (XDEN + D(I)) * Y
       end do
       RESULT = (XNUM + C(8)) / (XDEN + D(8))
       IF (JINT .NE. 2) THEN
          YSQ = AINT(Y*SIXTEN)/SIXTEN
          DEL = (Y-YSQ)*(Y+YSQ)
          RESULT = EXP(-YSQ*YSQ) * EXP(-DEL) * RESULT
       END IF
    ELSE
       !------------------------------------------------------------------
       !  Evaluate  erfc  for |X| > 4.0
       !------------------------------------------------------------------
       RESULT = ZERO
       IF (Y .GE. XBIG) THEN
          IF ((JINT .NE. 2) .OR. (Y .GE. XMAXR4)) GO TO 30
          IF (Y .GE. XHUGE) THEN
             RESULT = SQRPI / Y
             GO TO 30
          END IF
       END IF
       YSQ = ONE / (Y * Y)
       XNUM = P(6)*YSQ
       XDEN = YSQ
       DO I = 1, 4
          XNUM = (XNUM + P(I)) * YSQ
          XDEN = (XDEN + Q(I)) * YSQ
       end do
       RESULT = YSQ *(XNUM + P(5)) / (XDEN + Q(5))
       RESULT = (SQRPI -  RESULT) / Y
       IF (JINT .NE. 2) THEN
          YSQ = AINT(Y*SIXTEN)/SIXTEN
          DEL = (Y-YSQ)*(Y+YSQ)
          RESULT = EXP(-YSQ*YSQ) * EXP(-DEL) * RESULT
       END IF
    END IF
30  continue
    !------------------------------------------------------------------
    !  Fix up for negative argument, erf, etc.
    !------------------------------------------------------------------
    IF (JINT .EQ. 0) THEN
       RESULT = (HALF - RESULT) + HALF
       IF (X .LT. ZERO) RESULT = -RESULT
    ELSE IF (JINT .EQ. 1) THEN
       IF (X .LT. ZERO) RESULT = TWO - RESULT
    ELSE
       IF (X .LT. ZERO) THEN
          IF (X .LT. XNEG) THEN
             RESULT = XINFR4
          ELSE
             YSQ = AINT(X*SIXTEN)/SIXTEN
             DEL = (X-YSQ)*(X+YSQ)
             Y = EXP(YSQ*YSQ) * EXP(DEL)
             RESULT = (Y+Y) - RESULT
          END IF
       END IF
    END IF
80  continue
  end SUBROUTINE CALERF_r4

  !------------------------------------------------------------------------------------------

  !cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

  pure function shr_spfn_gamma_nonintrinsic_r8(X) result(gamma)

    !cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
    !
    ! 7 Feb 2013 -- S. Santos
    ! The following comments are from the original version. Changes have
    ! been made to update syntax and allow inclusion into this module.
    !
    !----------------------------------------------------------------------
    !
    ! THIS ROUTINE CALCULATES THE GAMMA FUNCTION FOR A REAL ARGUMENT X.
    !   COMPUTATION IS BASED ON AN ALGORITHM OUTLINED IN REFERENCE 1.
    !   THE PROGRAM USES RATIONAL FUNCTIONS THAT APPROXIMATE THE GAMMA
    !   FUNCTION TO AT LEAST 20 SIGNIFICANT DECIMAL DIGITS.  COEFFICIENTS
    !   FOR THE APPROXIMATION OVER THE INTERVAL (1,2) ARE UNPUBLISHED.
    !   THOSE FOR THE APPROXIMATION FOR X .GE. 12 ARE FROM REFERENCE 2.
    !   THE ACCURACY ACHIEVED DEPENDS ON THE ARITHMETIC SYSTEM, THE
    !   COMPILER, THE INTRINSIC FUNCTIONS, AND PROPER SELECTION OF THE
    !   MACHINE-DEPENDENT CONSTANTS.
    !
    !
    !*******************************************************************
    !*******************************************************************
    !
    ! EXPLANATION OF MACHINE-DEPENDENT CONSTANTS
    !
    ! BETA   - RADIX FOR THE FLOATING-POINT REPRESENTATION
    ! MAXEXP - THE SMALLEST POSITIVE POWER OF BETA THAT OVERFLOWS
    ! XBIG   - THE LARGEST ARGUMENT FOR WHICH GAMMA(X) IS REPRESENTABLE
    !          IN THE MACHINE, I.E., THE SOLUTION TO THE EQUATION
    !                  GAMMA(XBIG) = BETA**MAXEXP
    ! XINF   - THE LARGEST MACHINE REPRESENTABLE FLOATING-POINT NUMBER;
    !          APPROXIMATELY BETA**MAXEXP
    ! EPS    - THE SMALLEST POSITIVE FLOATING-POINT NUMBER SUCH THAT
    !          1.0+EPS .GT. 1.0
    ! XMININ - THE SMALLEST POSITIVE FLOATING-POINT NUMBER SUCH THAT
    !          1/XMININ IS MACHINE REPRESENTABLE
    !
    !     APPROXIMATE VALUES FOR SOME IMPORTANT MACHINES ARE:
    !
    !                            BETA       MAXEXP        XBIG
    !
    ! CRAY-1         (S.P.)        2         8191        966.961
    ! CYBER 180/855
    !   UNDER NOS    (S.P.)        2         1070        177.803
    ! IEEE (IBM/XT,
    !   SUN, ETC.)   (S.P.)        2          128        35.040
    ! IEEE (IBM/XT,
    !   SUN, ETC.)   (D.P.)        2         1024        171.624
    ! IBM 3033       (D.P.)       16           63        57.574
    ! VAX D-FORMAT   (D.P.)        2          127        34.844
    ! VAX G-FORMAT   (D.P.)        2         1023        171.489
    !
    !                            XINF         EPS        XMININ
    !
    ! CRAY-1         (S.P.)   5.45E+2465   7.11E-15    1.84E-2466
    ! CYBER 180/855
    !   UNDER NOS    (S.P.)   1.26E+322    3.55E-15    3.14E-294
    ! IEEE (IBM/XT,
    !   SUN, ETC.)   (S.P.)   3.40E+38     1.19E-7     1.18E-38
    ! IEEE (IBM/XT,
    !   SUN, ETC.)   (D.P.)   1.79D+308    2.22D-16    2.23D-308
    ! IBM 3033       (D.P.)   7.23D+75     2.22D-16    1.39D-76
    ! VAX D-FORMAT   (D.P.)   1.70D+38     1.39D-17    5.88D-39
    ! VAX G-FORMAT   (D.P.)   8.98D+307    1.11D-16    1.12D-308
    !
    !*******************************************************************
    !*******************************************************************
    !
    ! ERROR RETURNS
    !
    !  THE PROGRAM RETURNS THE VALUE XINF FOR SINGULARITIES OR
    !     WHEN OVERFLOW WOULD OCCUR.  THE COMPUTATION IS BELIEVED
    !     TO BE FREE OF UNDERFLOW AND OVERFLOW.
    !
    !
    !  INTRINSIC FUNCTIONS REQUIRED ARE:
    !
    !     INT, DBLE, EXP, LOG, REAL, SIN
    !
    !
    ! REFERENCES:  AN OVERVIEW OF SOFTWARE DEVELOPMENT FOR SPECIAL
    !              FUNCTIONS   W. J. CODY, LECTURE NOTES IN MATHEMATICS,
    !              506, NUMERICAL ANALYSIS DUNDEE, 1975, G. A. WATSON
    !              (ED.), SPRINGER VERLAG, BERLIN, 1976.
    !
    !              COMPUTER APPROXIMATIONS, HART, ET. AL., WILEY AND
    !              SONS, NEW YORK, 1968.
    !
    !  LATEST MODIFICATION: OCTOBER 12, 1989
    !
    !  AUTHORS: W. J. CODY AND L. STOLTZ
    !           APPLIED MATHEMATICS DIVISION
    !           ARGONNE NATIONAL LABORATORY
    !           ARGONNE, IL 60439
    !
    !----------------------------------------------------------------------

    real(r8), intent(in) :: x
    real(r8) :: gamma
    real(r8) :: fact, res, sum, xden, xnum, y, y1, ysq, z

    integer :: i, n
    logical :: negative_odd

    ! log(2*pi)/2
    real(r8), parameter :: logsqrt2pi = 0.9189385332046727417803297E0_r8

    !----------------------------------------------------------------------
    !  NUMERATOR AND DENOMINATOR COEFFICIENTS FOR RATIONAL MINIMAX
    !     APPROXIMATION OVER (1,2).
    !----------------------------------------------------------------------
    real(r8), parameter :: P(8) = &
         (/-1.71618513886549492533811E+0_r8, 2.47656508055759199108314E+1_r8, &
         -3.79804256470945635097577E+2_r8, 6.29331155312818442661052E+2_r8, &
         8.66966202790413211295064E+2_r8,-3.14512729688483675254357E+4_r8, &
         -3.61444134186911729807069E+4_r8, 6.64561438202405440627855E+4_r8 /)
    real(r8), parameter :: Q(8) = &
         (/-3.08402300119738975254353E+1_r8, 3.15350626979604161529144E+2_r8, &
         -1.01515636749021914166146E+3_r8,-3.10777167157231109440444E+3_r8, &
         2.25381184209801510330112E+4_r8, 4.75584627752788110767815E+3_r8, &
         -1.34659959864969306392456E+5_r8,-1.15132259675553483497211E+5_r8 /)
    !----------------------------------------------------------------------
    !  COEFFICIENTS FOR MINIMAX APPROXIMATION OVER (12, INF).
    !----------------------------------------------------------------------
    real(r8), parameter :: C(7) = &
         (/-1.910444077728E-03_r8,          8.4171387781295E-04_r8, &
         -5.952379913043012E-04_r8,       7.93650793500350248E-04_r8, &
         -2.777777777777681622553E-03_r8, 8.333333333333333331554247E-02_r8, &
         5.7083835261E-03_r8 /)

    negative_odd = .false.
    fact = 1._r8
    n = 0
    y = x
    if (y <= 0._r8) then
       !----------------------------------------------------------------------
       !  ARGUMENT IS NEGATIVE
       !----------------------------------------------------------------------
       y = -x
       y1 = aint(y)
       res = y - y1
       if (res /= 0._r8) then
          negative_odd = (y1 /= aint(y1*0.5_r8)*2._r8)
          fact = -pi/sin(pi*res)
          y = y + 1._r8
       else
          gamma = xinfr8
          return
       end if
    end if
    !----------------------------------------------------------------------
    !  ARGUMENT IS POSITIVE
    !----------------------------------------------------------------------
    if (y < epsr8) then
       !----------------------------------------------------------------------
       !  ARGUMENT .LT. EPS
       !----------------------------------------------------------------------
       if (y >= xminr8) then
          res = 1._r8/y
       else
          gamma = xinfr8
          return
       end if
    elseif (y < 12._r8) then
       y1 = y
       if (y < 1._r8) then
          !----------------------------------------------------------------------
          !  0.0 .LT. ARGUMENT .LT. 1.0
          !----------------------------------------------------------------------
          z = y
          y = y + 1._r8
       else
          !----------------------------------------------------------------------
          !  1.0 .LT. ARGUMENT .LT. 12.0, REDUCE ARGUMENT IF NECESSARY
          !----------------------------------------------------------------------
          n = int(y) - 1
          y = y - real(n, r8)
          z = y - 1._r8
       end if
       !----------------------------------------------------------------------
       !  EVALUATE APPROXIMATION FOR 1.0 .LT. ARGUMENT .LT. 2.0
       !----------------------------------------------------------------------
       xnum = 0._r8
       xden = 1._r8
       do i=1,8
          xnum = (xnum+P(i))*z
          xden = xden*z + Q(i)
       end do
       res = xnum/xden + 1._r8
       if (y1 < y) then
          !----------------------------------------------------------------------
          !  ADJUST RESULT FOR CASE  0.0 .LT. ARGUMENT .LT. 1.0
          !----------------------------------------------------------------------
          res = res/y1
       elseif (y1 > y) then
          !----------------------------------------------------------------------
          !  ADJUST RESULT FOR CASE  2.0 .LT. ARGUMENT .LT. 12.0
          !----------------------------------------------------------------------
          do i = 1,n
             res = res*y
             y = y + 1._r8
          end do
       end if
    else
       !----------------------------------------------------------------------
       !  EVALUATE FOR ARGUMENT .GE. 12.0,
       !----------------------------------------------------------------------
       if (y <= xbig_gamma) then
          ysq = y*y
          sum = C(7)
          do i=1,6
             sum = sum/ysq + C(i)
          end do
          sum = sum/y - y + logsqrt2pi
          sum = sum + (y-0.5_r8)*log(y)
          res = exp(sum)
       else
          gamma = xinfr8
          return
       end if
    end if
    !----------------------------------------------------------------------
    !  FINAL ADJUSTMENTS AND RETURN
    !----------------------------------------------------------------------
    if (negative_odd)  res = -res
    if (fact /= 1._r8) res = fact/res
    gamma = res
    ! ---------- LAST LINE OF GAMMA ----------
  end function shr_spfn_gamma_nonintrinsic_r8

  !! Incomplete Gamma function
  !!
  !! @author  Tianyi Fan
  !! @version August-2010
  real(r8) elemental function shr_spfn_igamma(a, x)
    ! Upper incomplete gamma function.
    ! Modified for inclusion in this module and made
    ! pure elemental, September 2012

    real(r8), intent(in) ::      a
    real(r8), intent(in) ::      x

    ! local variable
    real(r8) :: xam, gin, s, r, t0
    integer  :: k


    if (x == 0.0_r8) then
       shr_spfn_igamma = shr_spfn_gamma(a)
       return
    end if

    xam = -x + a * log(x)

    if ((xam > 700.0_r8) .or. (a > xbig_gamma)) then
       ! Out of bounds
       ! Return "huge" value.
       shr_spfn_igamma = xinfr8
       return

    else if (x <= (1.0_r8 + a)) then
       s = 1.0_r8 / a
       r = s

       do  k = 1,60
          r = r * x / (a+k)
          s = s + r

          if (abs(r/s) < 1.0e-15_r8) exit
       end do

       gin = exp(xam) * s
       shr_spfn_igamma = shr_spfn_gamma(a) - gin

    else
       t0 = 0.0_r8

       do k = 60,1,-1
          t0 = (k - a) / (1.0_r8 + k / (x + t0))
       end do

       shr_spfn_igamma = exp(xam) / (x + t0)
    endif

  end function shr_spfn_igamma


end module shr_spfn_mod